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\ I,  INTRODUCTION

—
> This report discusses an adaptive algorithm for optimizing
the gain of an antenna array on an incoming signal, The algorithm
is based on a steepest-ascent maximization of the array output

power, subject to a constraint on the array weights.

This algorithm is under|investigation\for use in conjunction
with a power inversion adaptive array ,» a modified version of
the LMS adaptive array . A power inversion adaptive array can
provide significant protection from interference in a spread spectrum
communication system, but it does not provide any form of beam tracking
on the desired signal. Beam tracking can be obtained, however, by
first arraying antenna elements in pairs with power inversion feed-
back, and then combining the element-pair outputs with the gain . .
optimizing algorithm described here. - is’ ,_ueﬂdiscuss~\7%‘i .
only the gain optimizing algorithm.  The combined system will be \  »
the subject of a future report. \\\\> S~

—~—
Tore—

——

IT, A GAIN OPTIMIZING ALGORITHM I

Consider an array of N antenna elements as shown in Fig. 1,
For simplicity, the elements are assumed to be isotropic and non-
interacting. The signal from each element, Yij(t), is passed through
a processor Pi that generates K outputs labeled X;(t) on Fig, 1.
Each output Xj(t) is multiplied by a real weighting coefficient W;
and then is summed to produce the array output S(t). The processor
Pi may be either a quadrature hybrid with two outputs as shown in
Fig, 2, or a tapped delay-line with K outputs, as shown in Fig, 3,
A quadrature hybrid processor (Fig. 2) provides a simple magnitude
and phase adjustment of the signal Yj(t) and is the appropriate form
of processing when the signals are narrowband. A tapped delay-line
processor (Fig. 3) provides a frequency dependent transfer function
behind each element and is appropriate for wider bandwidth signals*
The gain optimizing algorithm to be developed in this report may be
used with either type of processing, and an example of each will be
given below.

In this report we develop an iterative algorithm for adjusting
the weights Wi such that the array gain is maximized on an incoming
signal. The algorithm is based on a steepest-ascent maximization of
the array output power, subject to a constraint to prevent the weights
from going to infinity. The algorithm discussed here is in the spirit

*Reference [8] contains a quantitative comparison of the bandwidth
performance of quadrature hyprid and tapped delay-line processors
for a two-element array.
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%'{;, Fig. 3. Array with tapped delay-line processing.

of the LMS algorithm developed by Widrow, et al, [6], and discussed
in many reports on adaptive arrays [7,9]. The general properties of
constrained gradient techniques have been discussed by Eveleigh [10]
and by Gi11 and Murray [11].

Let us assume that each of the signals Xij(t) is sampled periodic-
ally in time, with an interval between samples equal to at. Let X;j(J)
denote the value of Xi(t) at the jth sampling instant and also let

[%,(3) |
X,(3)
(1) X = | 2"

| )]

be a column vector with components X;j(j). Also, let us assume that at
the jth sampling instant, the weights in the array have the value Wi(j),
which may be represented by the column vector W(j);

e - L T B N N I P T
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0 K R YR I R R B
?
i
et [ i
- w'l(j.)
= W,(3)
(2) W@ =|
Jo .
R
ff We wish to develop an iterative algorithm by which these weights
v can be adjusted at each sample to maximize the array gain on an incom-"
» ing signal.

33
e Intuitively speaking, maximum array gain on an incoming signal
. will result in the greatest output signal power from the array., Since
~; the array output signal is
‘ NK
(3) S(t) = ] WXt
. i=1

-i the average output power is

. —-— NK NK

(4) s“(ty= 1 1} wiwjxi(t)xj(t)

N : i=1 1=1

N

%
-/ where the overb notes the time average. We would like to choose
B the weights so SZ(t) is maximum. However, there is clearly no upper
o limit to SE(t) if the Wy are_allowed to take on arbitrary values, so
2 it is necessary to maximize SZ(t) subject to some constraint on the
) values of the weights. Several types of constraints appear to be

N possible, but in this report we assume the weights must satisfy the
k- constraint equation
NK
', (5) 2 "1‘ =1 .
- o i=1

L

1)

)

2 : I.e., the weights are constrained to lie on the surface of a hypersphere
- of unit radius.

o

j% To optimize the gain of the array, we adopt the following
23 iterative algorithm

\
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(6) W(i+1) = W({) + kv(j)
where

W) =

W(j+1) =

K =
and v(i) =

.............

weight vector at the jth iteration
weight vector at the (j+1)St iteration
scalar constant controlling the rate of adaptation

a vector correction term chosen to move the weights

toward the maximum gain setting,

The correction term (j) is obtained by taking the gradient

of SZ(t) and retaining only its component paral
Since the gradient of SZ(t) is given by

-

[+ 34
(4]
N)]

|

V)
=

@
w
Nl

n 9lsd =

|+ o

o
(74}

d

- -

we find from Eq. (4) that

[ X ()]
X,(t)

ceaw

| k(%)

NK
j§1 WiX;(t) = 2

lel to the hypersphere.

X (£)s(t) |
Xz(t)S(t)

LXNK(t)S(t)_




This gradient vector can be written as the sum of two components --

one perpendicular to the weight hypersurface and one tangent to the
hypersurface. That is,

2y 2 2
(9) () =5, () 4, (5F)
where Yy, (52) and Y (52) are tangent and perpendicular, respect-
ively, tb the surface bf the hypersphere, as shown in Fig. 4. To

obtainVy (S2), we let n, denote a unit vector normal to the surface
of the hypersphere. (nw is also shown in Fig. 4.) A, will be given by

E‘l N
R
W
R R
(10) LV
Mk
R
where
= 2 2 2
- (52) is then given by (T denotes the transpose)
@y _ T -2
(12) v, (s7) = IR v (s A,
R W

Wy
- | W
& 2
|
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Fig. 4, Perpendicular and tangential components of vw(§2).

By subtracting Y, (52) from Vw(SZ{ (see Eq. (9)), we obtain
[ %5 ] s,
S R®

(13) v, (s?) =
i} ——

< 22
i XNKS R

L _
In view of the constraint equation,
_ NK
(14) R? = L w2 o= : (14)
"=

we may drop the R2 term to obtain
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I o
5% | [ws S(X, - W;S) ]
— 2 e e
(15) W, =T = :
| |w.s? S - W.'5)
RTINS R T T

Since we would 1ike to control the weights in real time, it is impractical
to compute the time average of the quantities S(Xj - W;S) indicated by
the overbar in Eq. (15). It would be possible to compute the average

of this quantity over a finite time period and consider this as an
estimate of the infinite time average. However, as is done in the LMS
algorithm (6), we will adopt the simplest estimate of all, namely, we
ignore the averaging completely and just use

S(X2 - NZS)

(16) v, o~

S(Xnk = Wni®)

The iterative algorithm given in Eq. (6) thus becomes

(7)) WG+ = W (3) + kS(3) DX, (3) - W (3)s] :

Let us first consider what happens with this algorithm if the
weights are off the constraint surface for some reason. We would like
the algorithm to be such that if the weights drift off the surface,
they will automatically return to the surface. With this algorithm,
it turns out they will do this. To see why, note that the second
term in Eq. (13) represents the perpendicular component of the
gradient. In simplifying Eq. (13), we obtained Eq. (15) by dropping
the term

2
R* =
Z]

which is unity if the weight constraint is satisfied. Note, however,
that if the weights are off the hypersphere for some reason, the
equation

EETRPTI S T AL ST S U S T VA RV SR PE St Vi SR P P T S S T ST S

W - @ wem eie - . R T S S T . . .
L N T T O T I ik S W S W RGPS WL YIS IPCITNS T SO TS T U R T R Tt St TP P St




pw?=1

will not hold. Hence, the second vector in Eq. (15) will be parallel
to the perpendicular component of the gradient, but will have the
wrong magnitude. If, for example,

) wiz > 1,

the vector

(18)

2
NNKS .
has a greater magnitude than vy, (SZ). Then in Eq. (15), in the
second term, we subtract a vector greater than the perpendicular
comggnent of Vw(§2). Note that since the perpendicular component of
vw(S¢) always points outward away from the origin, (we can always
increase the output power SZ from the array simply by increasing all
weight coefficients in proportion), the second term subtracted in
Eq. (15) overcorrects for the perpendicular component and the resulting
total vector in Eq. (15) points back toward the hypersphere; i.e.,
it has the correct parallel component but has a perpendicular compon-
ent pointing inward. This inward perpendicular component will cause
the weights to move back onto the constraint surface.

In a similar way, if

Iw?a,

the second term in Eq. (15) will have a smaller magnitude than the
perpendicular component of vw(Sz). The net vector in Eq. (15) will
not have its perpendicular component completely cancelled--there will
be a residual radial component, which will move the weights back out
toward the surface.

Thus, we see that dropping the term
2 _
WS =1
in going from Eq. (13) to Eq. (15), which was done to simplify the

algorithm, is important because it makes the weights always tend
toward the constraint surface.



......

Finally, we discuss the stability of the iterative algorithm
in Eq, (17). Because the signals are sampled at time increments At
and a correction is applied to the weights at each sample instant,
the system controlling the weights may be viewed as a sampled data
control system. Hence, we may expect that if the loop gain constant
k is too large, the system will become unstable.

To obtain an idea of the suitable range of values for k, let us
suppose that in the steady state, the ith array weight will have the
value Woi. (Note that the final steady-state solution is not unique --
there are many sets of array weights that will maximize the array
gain toward a given signal. Wy represents one possible set of steady-
state weights.) Suppose at the jth jteration, wi(j) differs from
woi by Awi(j):

(]9) w'i(j) = wo’i + Awi(j)
Using this equation in Eq. (17) yields

(20) Mg+ B (3#1) = Wy + AW, (5) + KS(I)DX,(3) = W S(3)-aM, (3)S(3)]
Since Wpj is a steady-state solution to the weight iteration equation,
Woi wi]? have the property that the average value of the quantity

S(3) [X;(3) - W ;S(3)]

is zero; i.e., in the steady-state, the correction term in Eq. (17)

will average to zero over many samples, so both Wj(j) and Wj/j+1) assume
the same value, Wgj. Cancelling the Wpi term and dropping the term

S(3) [¥;(3) - W ;8ti)] From Eq. (2) leaves

(21) AW (3+41) = AW, (3) - kS(3)aM, (3)S(3)

M (3) 01 = ks2(4)]

In order for the algorithm to converge, the average value of the
factor 1 - kS2(j) must be such that

AW, (3+1)

2/
: = |1 - kS°(3)] <1
AwilJS

(22)

10
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£3 so that at successive iterations the difference between Wi(j) and :
Wos becomes smaller. To satisfy Eq. (22), k must lie in the range

g 1

(23) 0 <K<
I__ 25°(3)

Furthermore, since ﬁ
i (24) s(3) = Xw=w'x , |
i |
it we have ]
I—,f, (25) sZ(3) = WXXTW .
mﬁ Note that the constraint equation

pw2=n
implies t he vector W is a unit vector, Hence, the maximum possible

value of S¢(t) will equal the maximum eigenvalue of the matrix

(26) o = xx'

(This case will occur if the unit vector W lies along the principal
axis of ¢ associated with this eigenvalue.) Thus, if A denotes
the maximum eigenvalue of ¢, the feedback algorithm wilT®Be stable
as long as k 1jes in the range

ﬁil (27) 0<k<——
zxmax

We can obtain a more readily usable upper bound for k by noting that

NK 5
(28) Amax S Trace ¢ = )) X (t)

i=1

so the algorithm will be stable if k is restricted to the narrower
range

1

- — o W - ee o W e - oo - e e e R e e e . et . A S PR -,-'~'-» IERSCIRICIR, T St A S D LA
i (% B RS N ‘“h.‘-L_LhL“g.' e ? PSS R S L o PR AP AP A TE Sl el SO SOACToS N - T - . S - PRV Wl ST Sl Sl R FOR. S T P
= b 10 M) > LR IS . AT et P -




o
)
i
i 1
- (29) 0 <k < , .
4 NK T—
F 2 1 Xj(t)
- i=1
Note that
NK
2
YT OXC(t)
HE

is proportional to the total power incident on the array.
Examples

Now we give two examples of the use of this algorithm, The
first example is a two-element array with quadrature hybrid processing
and a narrowband signal. The second example is a two-element array
with tapped delay-line processing and a wide bandwidth signal.

EXAMPLE 1:

Consider a two-element array as shown in Fig. 5. A signal is
assumed to propagate into the array from an angle relative to
broadside. (We assume the antenna elements to be isotropic and non-
interacting.) We will assume also that there is no noise, As a
result, the received signals in the elements are given by

(30) Y](t) = a cos [wot]

(31) Yz(t) = a cos [mot - ¢°]

where a is the amplitude of the signal, wy is the carrier frequency,
and % is the interelement phase shift due to the propagation delay:

= 2L
(32) % = 3 sin o

(o]

(L is the element spacing and Ao is the free-space wavelength,) The
signal Y{(t) is arbitrarily chosen to have zero electrical phase
angle,




-~ ot
a At ataa

';Ff ~ Fig. 5, A two-element array with quadrature hybrids.,

}! The signal from each element is passed through a quadrature

o hybrid; the signals out of the hybrids are denoted by X;(t). Xj(t)
t and Xo(t) are the in-phase and quadrature components, respectively,
rH of Y1%t), and X3(t) and X4(t) are the in-phase and quadrature com-
‘ES ponents of Y2(t§. Thus, we have

(33)  X;(t) = a cos (ut)
jig (34) Xz(t) = a sin (mot)
- (35) x3(t) = a cos (mot - ¢°)

8
36 (36) Xg(t) = a sin (u t - o)
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A Fortran computer program was written (see Appendix I) to
simulate the behavior of the iterative algorithm in Eq, (17). In
the examples to be shown below, we have arbitrarily chosen

(37) a=1

(38) L

Ao/2 (half-wavelength spacing),

and for the initial value of the weight vector,

(39) W=

OO~

(Note that this satisfies the constraint equation.)
Some results of this simulation ar displayed in Figs. 6 to 13.

In Figs. 6 and 7, the desired signal arrives from broadside
(e = 0°). Figure 6 shows the transients that result in the four
weights, and Fig. 7 shows the final array pattern after the weight
transients have ended. It may be seen that the beam maximum points
in the proper direction, and it can be shown that the final array
pattern has the maximum possible gain in the direction of the desired
signal.* Figures 8 and 9 show similar results for the case when the
desired signal arrives from @ = 30°. Figures 10 and 11 show 6 = 60°,
and Figs, 12 and 13 show 6 = 90°. In all cases, the final weights
in the array yield a maximum possible gain in the signal direction,
and it can be seen from the patterns how the beam is steered toward
the signal.

*For a broadside signal, maximum gain occurs when w1 = w3 and
W, =W
2 4°

14
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EXAMPLE 2

We again consider a two-element array but with a two-section
tapped delay line processor behind each element, as shown in Fig, 14.
Each delay 1ine section is a quarter wavelength long at the center
frequency of the signal.

(M (T)

(T) (T)

Fig. 14. A two-element array with tapped delay-lines.

An amplitude modulated signal is assumed to propagate into the
array and to produce element signals

(40) Y1(t) = a[l + cos wmt] cos [wot]

23
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(a1) Y2(t) = a[1 + cos mm(t—T)] cos [wo(t ~1)]

where a is the amplitude, wy is the modulation frequency, wp is the
carrier frequency, and © is the propagation time delay between elements,
given by

(42) : = %- sine .

Each delay line section (between taps) is a quarter wavelength long
at frequency W and hence causes a time delay T equal to

(43) T= Zm;

Thus

(44) X (t) = Yy(t) '

(45) Xp(t) = Y;(t - T) '
(36) X3(t) = Y (t - 27) '
(47) Xg(t) = Y,(t)

(48) Xg(t) = Y,(t = T)

and

(49) Xg(t) = Y,(t - 2T) :

The feedback algorithm in Eq. (17) has been simulated in this
problem (see Appendix II) with the following parameter values

(50) a=1

(51) Oy = ‘:_O
A

(52) L= 59
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and the arrival angle 6 = 0°, 30°, 60°, and 90°. The initial

5 weight vector was chosen to be
1
0
% =0
% “ o '
) 0
0

The weight transients and the resulting array patterns (computed at
frequency mo) are shown in Figs. 15 through 22.

-
1.
e Figures 15 and 16 show the weight transients and the final
. array pattern (at frequency wg) when 6 = 0°. Figures 17 and 18 show
o similar results for 6 = 30°, Figs. 19 and 20 show 6 = 60°, and Figs.
o 21 and 22 show 6 = 90°. In all cases, the resulting weight settings
maximize the pattern response toward the signal.

CONCLUSIONS
{? This report has discussed an iterative algorithm for adjusting
- the weights in an adaptive array to maximize the array gain on an
- incoming signal. The algorithm is based on a steepest-ascent maximiza-
" tion of the array output power subject to the constraint that the
e sum of the squares of the array weights is constant. It was shown

that the algorithm prevents the weights from drifting away from the
A constraint surface and also that the algorithm is stable for a
i suitable range of the feedback gain constant.

Two examples showing that the algorithm does optimize gain were

g’ presented, one with a CW signal-and guadrature hybrid processing
3 behind the elements, and the other with a modulated signal and tapped
. delay-l1ine processing behind the elements.
N
&
-~
£,
E
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